The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK.

نویسندگان

  • J P Adams
  • A E Anderson
  • A W Varga
  • K T Dineley
  • R G Cook
  • P J Pfaffinger
  • J D Sweatt
چکیده

The mitogen-activated protein kinase ERK has recently become a focus of studies of synaptic plasticity and learning and memory. Due to the prominent role of potassium channels in regulating the electrical properties of membranes, modulation of these channels by ERK could play an important role in mediating learning-related synaptic plasticity in the CNS. Kv4.2 is a Shal-type potassium channel that passes an A-type current and is localized to dendrites and cell bodies in the hippocampus. The sequence of Kv4.2 contains several consensus sites for ERK phosphorylation. In the present studies, we tested the hypothesis that Kv4.2 is an ERK substrate. We determined that the Kv4.2 C-terminal cytoplasmic domain is an effective ERK2 substrate, and that it is phosphorylated at three sites: Thr(602), Thr(607), and Ser(616). We used this information to develop antibodies that recognize Kv4.2 phosphorylated by ERK2. One of our phospho-site-selective antibodies was generated using a triply phosphorylated peptide as the antigen. We determined that this antibody recognizes ERK-phosphorylated Kv4.2 in COS-7 cells transfected with Kv4.2 and native ERK-phosphorylated Kv4.2 in the rat hippocampus. These observations indicate that Kv4.2 is a substrate for ERK in vitro and in vivo, and suggest that ERK may regulate potassium-channel function by direct phosphorylation of the pore-forming alpha subunit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv4.2 is a locus for PKC and ERK/MAPK cross-talk.

Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is red...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway.

We investigated mitogen-activated protein kinase (MAPK) modulation of dendritic, A-type K+ channels in CA1 pyramidal neurons in the hippocampus. Activation of cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) leads to an increase in the amplitude of backpropagating action potentials in distal dendrites through downregulation of transient K+ channels in CA1 pyramidal neurons in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 75 6  شماره 

صفحات  -

تاریخ انتشار 2000